A Context Dependent Distance Measure for Shape Clustering
نویسندگان
چکیده
We present a new similarity measure between a single shape and a shape group as a basis for shape clustering following the paradigm of context dependent shape comparison: clusters are generated in the context of a reference shape, defined by the query shape it is compared to. Tightly coupled, the distance measure is the basis for a soft k-means like framework to achieve robust clustering. Successful application of the system along with generation of shape prototypes is demonstrated in comparison to latest approaches using elastic deformation.
منابع مشابه
An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملEffective Improved Graph Transduction
In this paper, we focus on the problem of shape retrieval and clustering. We put two questions together because they are based on the same method, called Improved Graph Transduction. For shape retrieval, we regard the shape as a node in a graph and the similarity of shapes is represented by the edge of the graph. Then we learn a new distance measure between the query shape and the testing shape...
متن کاملNew distance and similarity measures for hesitant fuzzy soft sets
The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...
متن کاملImproved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کامل